

Tetralogy of Fallot (TOF)

Incidence

• 3 to 4 per 10,000 live births.

Subtypes

- Tetralogy with varying degree of pulmonary stenosis
- Tetralogy with Pulmonary atresia (Pulmonary atresia with Ventricular Septal defect)
 - o TOF/PA with major aortopulmonary collaterals
- Tetralogy with Complete Common Atrioventricular Canal
- ToF with Absent Pulmonary Valve 3-6% of all Tetralogy
 - >30- 40% with 22q11 deletion; early respiratory failure
 - Fetal MRI may help Characterized by pulmonary regurgitation and stenosis and dilated branch pulmonary arteries and absence of patent ductus arteriosus
 - Poor ventricular function and pulmonary valve: aortic valve ratio>1 worse outcomes¹
- <u>ToF with common atrioventricular canal (CAVC)</u>
 - 6% of ToF; 80-90% trisomies
 - Usually Rastelli Type C

Associations

- Nearly 1/3 have an associated extracardiac anomaly or chromosomal derangement.
- 22q11 has been identified in 16% to 18% of all cases of TOF, and in one-half of those patients with TOF and an associated right aortic arch.
- TOF with a common atrioventricular canal is commonly seen in Trisomy 21.
- Right aortic arch in 25% of patients. The ductus arteriosus may be tortuous or absent. This may be associated with a vascular ring in some cases.
- Persistent left superior vena cava in 11% of cases.
- Mirror image dextrocardia {I,L,I} or isolated infundibular inversion {S,D,I}

- Heterotaxy- interrupted inferior vena cava, polysplenia variety usually associated with small left sided structures
- Branch pulmonary artery coarctation or isolation
- There are variations of coronary artery anatomy that needs to be confirmed postnatally.

Available Fetal Interventions - NONE

Fetal Imaging Predictors of Postnatal Interventions/Outcomes-

Echocardiographic measurements used for predicting severity of postnatal presentation include poor PA growth, smaller main PA, and PV z scores; ascending aorta or PV/aortic valve ratio; elevation of Doppler velocities in the right ventricular outflow tract; and retrograde flow in ductus arteriosus. *Caution – lack of reliability between prenatal and postnatal PV annulus Z scores*⁵

- If the PA is less than 50% of the size of the aorta on fetal, infants are more likely to have significant PA obstruction after birth, require postnatal PGE to maintain patency of DA, and are more likely to need a neonatal intervention.
- Retrograde flow in DA or absence of DA in the setting of severe RV outflow hypoplasia⁶
- PV Z score <-5 Ductal dependent; PV Z < -3 with rev ductal flow ³
- PV <- 3.5 Z, Surgery ~1 mo and 50% re intervention²⁻⁴
- PV Peak systolic velocity ≥ 87.5 cm/s at 19 to 22 weeks or >144.5cm/sec in third trimester 93% sensitive and 100% specific for predicting early intervention⁸
- Progression to atresia RARE (Only 6% have reported decrease in PV Z score without progression to PA)⁷
- Aortic arch sidedness and presence of a vascular ring s should be identified as TOF with a right aortic arch has a higher association with 22q11 deletion.
- Absence of thymus is also suggestive of 22q11 deletion.
- <u>ToF- with Absent PV</u>: Left ventricular dysfunction and hydrops and aorta <50% the size of MPA poor prognostic factors

Limitations of Fetal Echo for ToF

- Predicting Postnatal PV morphology and Z score
- Branch PA coarctation
- Coronary anatomy
- In ToF with Absent PV unable to predict respiratory status
- ToF- MAPCAs Distribution of pulmonary blood flow and surgical staging dependent on postnatal assessment. More diminutive or absent central branch PAs indicates more complex pulmonary blood flow

Neurodevelopmental Outcomes

- Variable based on associated syndromes and hypoxia prior to surgery and need for surgery in the first year of life.
- Include mild cognitive impairment; oral-motor dyscoordination, expressive speech and language abnormalities; impaired visual-spatial and visual-motor skills; attention-deficit/hyperactivity disorder (ADHD); motor delays; learning disabilities; and later problems with executive function and diminished healthrelated quality of life⁹
- As a group, children who require neonatal congenital heart surgery have lower mean IQs than age-matched controls, their IQs still fall within the normal range¹⁰.
- Hypoxemia prior to surgery has not been shown to have a significant impact on neurodevelopmental outcome but the study was small¹¹.

References:

- Anita Szwast, MD, Zhiyun Tian, MD, Margaret McCann, RDCS, Debbra Soffer, RDCS, Jill Combs, RN, MSN, Denise Donaghue, RN, MSN, and Jack Rychik, MD. Anatomic Variability and Outcome in Prenatally Diagnosed Absent Pulmonary Valve Syndrome. Ann Thorac Surg 2014;98:152–8
- Friedman K, Balasubramanian S, Tworetzky W. Midgestation fetal pulmonary annulus size is predictive of outcome in tetralogy of Fallot. Congenit Heart Dis. 2014 May-Jun;9(3):187-93Friedman et al, Cong Heart Dis 2014
- 3. Arya B, Levasseur SM, Woldu K, Glickstein JS, Andrews HF, Williams IA. Fetal echocardiographic measurements and the need for neonatal surgical intervention in Tetralogy of Fallot. Pediatr Cardiol. 2014 Jun; 35(5):810-6.
- Quartermain MD1, Glatz AC, Goldberg DJ, Cohen MS, Elias MD, Tian Z, Rychik J. Pulmonary outflow tract obstruction in fetuses with complex congenital heart disease: predicting the need for neonatal intervention. Ultrasound Obstet Gynecol. 2013 Jan; 41(1):47-53.
- Arunamata A, Balasubramanian S, Punn R, Quirin A, Tacy TA Impact of Fetal Somatic Growth on Pulmonary Valve Annulus Z-Scores During Gestation and Through Birth in Patients with Tetralogy of Fallot.Pediatr Cardiol. 2018 Aug; 39(6):1181-1187.
- Kwon EN1, Parness IA, Srivastava S, Nielsen JC, Geiger M.Subpulmonary stenosis assessed in midtrimester fetuses with tetralogy of Fallot: a novel method for predicting postnatal clinical outcome. Pediatr Cardiol. 2013 Aug; 34(6):1314-20. Epub 2013 Feb 7.
- Hornberger LK, Sanders SP, Sahn DJ, Rice MJ, Spevak PJ, Benacerraf BR, McDonald RW, Colan SD (1995) In utero pulmonary artery and aortic growth and potential for progression of pulmonary outflow tract obstruction in tetralogy of Fallot. J Am Coll Cardiol 25:739–745
- D. Escribano I. Herraiz MA. Granados J. Arbues A. Mendoza A. GalindoTetralogy of Fallot: prediction of outcome in the mid-second trimester of pregnancy Prenat Diagn. 2011 Dec;31(12):1126-33.
- Gil Wernovsky, MD1 and Daniel J. Licht, MD. Neurodevelopmental Outcomes in Children with Congenital Heart Disease – What can we impact? Pediatr Crit Care Med. 2016 August ; 17(8 Suppl 1): S232–S242.

- Mary T. Donofrio and An N. Massaro. Impact of Congenital Heart Disease on Brain Development andNeurodevelopmental Outcome. International Journal of Pediatrics,Volume 2010, Article ID 359390
- 11. Hedwig H. Hövels-Gürich, MD, Kerstin Konrad, PhD, Daniela Skorzenski, Claudia Long-Term Neurodevelopmental Outcome and Exercise Capacity After Corrective Surgery forTetralogy of Fallot or Ventricular Septal Defect in InfancyNacken, MD, Ralf Minkenberg, Dipl Phys, Bruno J. Messmer, MD, and Marie-Christine Seghaye, MD. Ann Thorac Surg 2006;81:958–67